A Mass-flow based MILP Formulation for the Inventory Routing with Explicit Energy Consumption

نویسندگان

  • Yun He
  • Cyril Briand
  • Nicolas Jozefowiez
چکیده

In this paper, we present a new mass-flow based Mixed Integer Linear Programming (MILP) formulation for the Inventory Routing Problem (IRP) with explicit energy consumption. The problem is based on a multiperiod single-vehicle IRP with one depot and several customers. Instead of minimizing the distance or inventory cost, the problem takes energy minimization as an objective. In this formulation, flow variables describing the transported mass serve as a link between the inventory control and the energy estimation. Based on physical laws of motion, a new energy estimation model is proposed using parameters like vehicle speed, average acceleration rate and number of stops. The solution process contains two phases with different objectives: one with inventory and transportation cost minimization as in traditional IRP, the other with energy minimization. Using benchmark instances for inventory routing with parameters for energy estimation, experiments have been conducted. Finally, the results of these two solution phases are compared to analyse the influence of energy consumption to the inventory routing systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mass-flow MILP formulation for energy-efficient supplying in assembly lines

This paper focuses on the problem of supplying the workstations of assembly lines with components during the production process. For that specific problem, this paper presents a Mixed Integer Linear Program (MILP) that aims at minimizing the energy consumption of the supplying strategy. More specifically, in contrast of the usual formulations that only consider component flows, this MILP handle...

متن کامل

MILP Formulation and Genetic Algorithm for Non-permutation Flow Shop Scheduling Problem with Availability Constraints

In this paper, we consider a flow shop scheduling problem with availability constraints (FSSPAC) for the objective of minimizing the makespan. In such a problem, machines are not continuously available for processing jobs due to preventive maintenance activities. We proposed a mixed-integer linear programming (MILP) model for this problem which can generate non-permutation schedules. Furthermor...

متن کامل

An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks

LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...

متن کامل

EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks

Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...

متن کامل

EEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks

Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016